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Abstract

It is of great interest to identify parent‐of‐origin effects (POEs) since POEs play

an important role in many human heritable disorders and human early life

growth and development. POE is sometimes referred to as imprinting effect in

the literature. Compared with the standard logistic regression analyses, ret-

rospective likelihood‐based statistical methods are more powerful in identi-

fying POEs when data are collected from related individuals retrospectively.

However, none of existing retrospective‐based methods can appropriately in-

corporate covariates that should be adjusted for if they are confounding fac-

tors. In this paper, a novel semiparametric statistical method, M‐HAP, is

developed to detect POEs by fully exploring available information from mul-

tilocus genotypes of case–control mother–child pairs and covariates. Some

large sample properties are established for M‐HAP. Finite sample properties of

M‐HAP are illustrated by extensive simulation studies and real data applica-

tions to the Jerusalem Perinatal Study and the Danish National Birth Cohort

study, which confirm the desired superiority of M‐HAP over some existing

methods. M‐HAP has been implemented in the updated R package CCMO.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) have been
successfully adopted for detecting causal genetic variants
associated with complex human disorders and shed some
light on the genetic architecture of such disorders.
Nevertheless, as shown in Eichler et al. (2010), a large

proportion of the genetic heritability remains un-
explained and is partially accounted by genetic effects
related to parental origin of children alleles. Parent‐of‐
origin effects (POEs) exist if the alleles with different
parental origins have different contributions to the phe-
notype of interest. For example, the phenotype of the
child could be mainly influenced by the allele inherited

http://orcid.org/0000-0001-6787-2549
https://orcid.org/0000-0003-3174-2552
mailto:zhangh@ustc.edu.cn
mailto:jinboche@mail.med.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fgepi.22428&domain=pdf&date_stamp=2021-08-23


from mother while the allele from the father has little or
no effect. POEs are known to contribute to human early
life growth and development (Peters, 2014; Petry et al.,
2007). Furthermore, increasing evidence suggests that
POEs play an important role in some neonatal diseases,
such as Silver‐Russell syndrome, Angelman syndrome
and Beckwith‐Wiedemann syndrome (Lim & Maher,
2009).

Family‐based design is commonly used to detect
POEs. Based on such kind of design, a variety of sta-
tistical methods have been proposed to assess POEs.
Weinberg et al. (1998) extended the log linear model in
Wilcox et al. (1998) to include both imprinting and
maternal effects through examining the relative risks
associated with offspring and maternal genotypes. As
shown in Weinberg et al. (1998), imprinting effects can
be fitted using an expectation‐maximization (EM) al-
gorithm. A similar model was provided by Ainsworth
et al. (2011), which parameterizes genetic effects in a
way similar to that of Weinberg et al. (1998). Basing on
the multinomial model provided by Ainsworth et al.
(2011), Howey and Cordell (2012) developed the soft-
ware EMIM to detect POEs. EMIM maximizes the
multinomial likelihood through a direct search algo-
rithm while Weinberg et al. (1998) uses an EM algo-
rithm to fit the log linear model. Weinberg (1999)
proposed a TDT‐like method for assessing POEs, which
stratifies the transmission or nontransmission allele
counts into a 2× 2 table according to the parental origin
of the alleles and adopts the Fisher's exact test or the
chi‐squared test to test the POEs. However, as noted by
Weinberg (1999), this method does not incorporate
maternal effects that serve as confounding factors in
assessing POEs. A similar TDT‐like method was im-
plemented in the software PLINK (Purcell et al., 2007),
which is widely adopted to analyze POEs (Orton et al.,
2011; Wang et al., 2012). Yang and Lin (2013) proposed
a partial likelihood approach for detecting imprinting
and maternal effects (LIME) based on a multiplicative
relative risk model. LIME does not rely on the as-
sumption about mating type probabilities and rarity of
the disease, which contributes to its robustness to vio-
lation of the usual assumptions without a notable loss of
power. Han et al. (2013) and F. Zhang et al. (2016) ex-
tended the approach of Yang and Lin (2013) to include
additional siblings of probands. Their simulation results
showed that recruiting additional affected siblings can
improve the power of testing POEs. Furthermore, F.
Zhang et al. (2019) extended LIME to the discordant
sibpair design and developed a method LIMEDSP).
LIMEDSP makes use of all available sibship data and
does not require control families. Other methods like
the logistic regression model and the generalized linear

model are also adopted to detect POEs (Burns et al.,
2005; Zhabotynsky et al., 2019).

The use of triads is attractive in POE analyses.
However, fathers are sometimes much harder to recruit
than mothers in some genetic studies (Yang & Lin, 2013).
In this paper, we focus on the case–control mother–child
pair design, a special family‐based design, which is
widely used in studies for neonatal diseases (Fu et al.,
2013; Mendonça et al., 2019; van de Putte et al., 2020). As
shown in Weinberg and Umbach (2005), the case–control
mother‐child pairs design permits the estimation of ma-
ternal, offspring, and parent‐of‐origin effects. Since ma-
ternal genotype data can provide partial parent‐of‐origin
information, this design is helpful in improving the POE
inference efficiency (Weinberg & Shi, 2009). POEs can be
detected using mother–child pairs' genotypes at a single
locus and some methods reviewed above can be directly
used (Ainsworth et al., 2011; Howey & Cordell, 2012;
Weinberg & Shi, 2009; Yang & Lin, 2013).

Assessing POEs relies on the availability of parent‐of‐
origin information of two children alleles. The parent‐of‐
origin information can be unambiguously inferred from
the genotypes of mother and child if at least one of them
is homozygous. For example, if the genotypes of mother
and child are AA and Aa, respectively, then the parental
origins of children alleles A and a should be mother and
father, respectively. On the other hand, if the genotypes
of both mother and child are heterozygous, the parent‐of‐
origin information is ambiguous. As shown in Yang and
Lin (2013), simply ignoring mother–child pairs with
unambiguous parent‐of‐origin information would result
in an estimation bias and a loss of inference efficiency.
Incorporating the genotype data from tightly linked loci
is helpful to determine parental origins of children al-
leles, and methods using multilocus genotype data can be
much more powerful in detecting POEs, compared with
single‐locus based methods (Gjessing & Lie, 2006; Howey
et al., 2015; Lin et al., 2013; F. Zhang & Lin, 2020).
Gjessing and Lie (2006) developed a software HAPLIN
based on a log linear model similar to the model in
Weinberg et al. (1998), which could utilize multilocus
genotypes to improve the power for detecting POEs. Lin
et al. (2013) used a logistic regression model to model the
POEs and estimated unknown parameters by maximiz-
ing a retrospective likelihood function that incorporates
genotype data from multiple loci. Moreover, Howey et al.
(2015) updated their software EMIM to take advantage of
haplotypes estimated with SHAPEIT2 (Delaneau et al.,
2013), so as to improve the power for detecting POEs.
Very recently, F. Zhang and Lin (2020) extended LIME
(Yang & Lin, 2013) by exploiting additional information
from multilocus genotypes to help infer the parental
origins of children alleles. Nevertheless, the existing
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statistical methods exploiting multilocus genotypes from
mother–child pairs cannot incorporate covariates that
should be adjusted for in the analysis of POEs if these
covariates are confounders.

In this paper, we aim to develop a multilocus statis-
tical method to detect POEs by adjusting for covariates
using mother–child paired data. The key idea is to adopt
an imputation‐like strategy to handle missing parent‐of‐
origins by borrowing the information from multilocus
genotypes. The advantage of our method is at least three‐
fold. First, it is generally more powerful than single‐locus
methods in assessing POEs. Second, it is computationally
very efficient compared with those expectation‐
maximization algorithm‐based methods for handling
missing parent‐of‐origins. Third, it is robust to model
misspecification to a large extent.

The rest of this paper is organized as follows. Our
proposed method is described in Section 2, which in-
cludes a model quantifying parent‐of‐origin effect, a
strategy used to infer parental origins by incorporating
multilocus genotypes, and a rigorous statistical in-
ference procedure based on a modified profile like-
lihood function. In Section 3, extensive simulation
studies are used to evaluate the desired advantages
of the proposed method over some existing methods. In
Section 4, the proposed method is applied to the
Jerusalem Perinatal Study and the Danish National
Birth Cohort study. Finally, some concluding remarks
are provided in Section 5.

2 | METHOD

2.1 | Notations and model

Let Y denote the status of a disease of interest coded by
1 or 0, depending on the presence or absence of the
disease. We are interested in association analysis be-
tween the disease and a single‐nucleotide polymorph-
ism (SNP). Hereafter, “test locus” is used to denote such
SNP. Let the major allele and minor allele of the test
locus be A and a, respectively. Let Gm, G f , and Gc de-
note the genotypes of mother, father, and child, re-
spectively. Let Gm

c and Gf
c be children alleles inherited

from the mother and father, respectively, which are
coded as 1 (or 0) if the inherited allele is a (or A). The
ordered genotype is denoted by G G( , )m

c
f
c . For instance,

(0, 1) means that an A allele is inherited from the mo-
ther and an a allele is inherited from the father. Num-
bers 0, 1, and 2 are used to represent the unordered
genotypes AA, Aa, and aa, respectively. Let X denote a
vector of covariates, which could consist of continuous
variables and/or categorical variables.

We propose to use a logistic regression model to
quantify genetic parent‐of‐origin effect on the phenotype,
which extends the model adopted in Lin et al. (2013) by
taking into account the effect of covariates:

( )
( )

Y G G G G X β β G

β G β G G β X

logit pr = 1 , , , , = +

+ + − + ,

m c
m
c

f
c m

c
m
c

f
c τ

0 1

2 3 4 (1)

where logit ∕t t t( ) = log{ (1 − )} is the logit function, β0 is
baseline log‐odds, β1, β2, and β3 are log‐odds ratio (OR)
parameters quantifying maternal effect, children effect, and
POE, respectively, and β4 is log‐OR parameter quantifying
the covariate effect. Let β β β β β β= ( , , , , )τ0 1 2 3 4 denote re-
gression parameters. Note that model (1) can be more
complicated by involving gene–gene interaction effects and
gene–environment interaction effects, but we do not con-
sider these interaction effects for the sake of simplicity of
statement. Note that the maternal effect is assumed to be
additive for the sake of statement simplicity, though this
additive assumption can be easily relaxed. A small scale of
simulation study showed that misspecifying the maternal
model had little impact on POE inference results
(Figure S2). Therefore, we still adopt the additive model for
the maternal effect.

2.2 | Inference of the parental origins
using multilocus genotypes

The parent‐of‐origin information, that is, phased alleles Gm
c

andGf
c, can be unambiguously inferred using Gc andGm if

and only if at least one of these two genotypes is homo-
zygous. In another word, the parent‐of‐origin information is
not available if the genotypes of both mother and child are
heterozygous, which leads to a major challenge in the in-
ference of parent‐or‐origin effects. Simply ignoring those
families without parent‐of‐origin information can result in
both efficiency loss and estimation bias (Yang & Lin, 2013).

A simple strategy to handling such incomplete‐
information families is to use observed data likelihood.
As shown in Lin et al. (2013), under the Mendelian in-
heritance law,

 


Y G G p Y G G G

p Y G G G

pr( = = 1) = pr( = 1, = 0,

= 1) + (1 − )pr( = 1, = 1,

= 0),

m c
a

m
m
c

f
c

a
m

m
c

f
c

where ≔p G apr( = 1) = pr( )a f
c is the minor allele fre-

quency (MAF). Since only mother–child pairs are in-
volved, the covariates are usually collected from mothers,
so that Gc and X can be reasonably assumed to be
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conditionally independent given Gm. Consequently, the
above equation can be extended to incorporate covariates:






Y G G X

p Y G G G X

p Y G G G

X

pr( = = 1, )

= pr( = 1, = 0, = 1, )

+ (1 − )pr( = 1, = 1,

= 0, ).

m c

a
m

m
c

f
c

a
m

m
c

f
c

(2)

Refer to Supporting Information Appendix A for a proof of
(2). Lin et al. (2013) proposed another strategy, which
borrows the information of SNPs tightly linked with the test
locus to infer the parental origins. A computationally in-
tensive expectation‐maximization algorithm was developed
in Lin et al. (2013) to fully exploit the information from
multilocus genotypes, without incorporating covariates.

In this paper, we propose to replace pa in (2) by the
conditional probability of G = 1f

c given multilocus geno-
types. Hereafter, those SNPs tightly linked with the test
locus are referred to as “adjacent loci”. If the adjacent loci
are in strong linkage disequilibrium (LD), then the prob-
ability of recombination among these loci in a single
meiosis would be very small, and the child would inherit an
entire haplotype from the mother with a very large prob-
ability. Consequently, we assume that the child inherits an
entire haplotype from the mother to simplify statistical in-
ference. Let the number of adjacent loci be K − 1 so that
the total number of SNPs is K . Let the joint genotypes of
mother and child at the K SNPs be denoted by
 G G G= ( , , …, )m m m

K
m

2 and  G G G= ( , , …, )c c c
K
c

2 , respec-
tively, where Gj

m and Gj
c are the genotypes of mother and

child at the jth adjacent locus ( j K= 2, …, ). Let
h h h{ , , …, }T1 2 denote all T possible haplotypes associated
with the K SNPs, with the corresponding haplotype fre-
quencies being μ μ μ μ= ( , , …, )T1 2 and μ = 1i

T
i=1 . Let the

unordered diplotype of mother be denoted by h hm m
1 2 . Let

the ordered child diplotype be denoted by h h( , )m
c

f
c , where

hm
c and hf

c are inherited from mother and father, respec-
tively. Here ∈h h h h h h h, , , { , , …, }m m

m
c

f
c

T1 2 1 2 . Since hm
c is

inherited from mother, it should be either hm
1 or hm

2 . Let
 H ( , )m c denote the set of all pairs of unordered maternal

diplotype and ordered child diplotype, h h h h( , ( , ))m m
m
c

f
c

1 2 ,
that are compatible with the mother–child genotype pair
 ( , )m c . Note that the parental origins of children alleles
(G G,m

c
f
c) at the test locus can be directly inferred from or-

dered children diplotype h h( , )m
c

f
c . Similarly, let  H ( , )f m c

denote the set of all pairs of unordered maternal diplotype
and ordered child diplotype, h h h h( , ( , ))m m

m
c

f
c

1 2 , that are
compatible with the mother–child genotype pair  ( , )m c

while the child inherits a minor allele a from father. Given

observed genotypes, the conditional probability of the child
inheriting a minor allele from father can be written as

 

 

 

≔

∈

∈
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( )
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=
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f
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m m
m
c

f
c m c
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(3)

Under Hardy–Weinberg equilibrium (HWE), random mat-
ing, and Mendelian inheritance law, h h h hpr( , ( , ))m m

m
c

f
c

1 2

can be expressed as a function of μ (Lin et al., 2013). Spe-
cifically, for h i=m

1 , h j=m
2 , h k=m

c , and h l=f
c , the

probability h h h hpr( , ( , ))m m
m
c

f
c

1 2 is equal to μ μ μi j l if k i= or
k j= and 0 otherwise. In the situation where the genotypes
of both mother and child are heterozygous, pa in Equation
(2) can be replaced by pf to result in the following
approximation:

≈ 


Y G G X p Y G G G G X

p Y G G G G X

pr( = = 1, ) pr( = = 1, = 0, = 1, )

+ (1 − )pr( = = 1, = 1, = 0, ).

m c
f

m c
m
c

f
c

f
m c

m
c

f
c

(4)

It follows from (1) and (3) that the right side of (4) is a
function of haplotype frequencies μ and regression
parameters β for given observed data. In practice, the
haplotype frequencies μ can be estimated using existing
programs such as the R package haplo.stats
(Sinnwell & Schaid, 2020). With estimated μ, the ap-
proximated penetrance function given in the right side of
(4) is a function of β. Compared with Equation (2), the
approximation (4) properly exploits the haplotype in-
formation inferred from multilocus genotypes, and it
should be intuitively more helpful in detecting POEs.

2.3 | Statistical inference based on a
modified profile likelihood

Let Y G G G G X( , , , , , )u u
m

u
c

mu
c

fu
c

u denote the analogue of
Y G G G G X( , , , , , )m c

m
c

f
c for the uth family, u n= 1, …, .

Assume that data Y G G X( , , , )u u
m

u
c

u , u n= 1, …, , are col-
lected from a case–control study with n1 cases (Y = 1u )
and n0 controls (Y = 0u ), so that n n n= +1 0. Note that
G G( , )mu
c

fu
c cannot be directly inferred from the genotype

pair G G( , )u
m

u
c if G G= = 1u

m
u
c . Throughout this paper, we

assume random mating, Mendelian inheritance law, and
conditional independence between Gc and X given Gm.
Furthermore, we assume that the disease prevalence

Ypr( = 1) is known a prior to be f :

4 | ZHANG ET AL.



Y fpr( = 1) = . (5)

Our statistical inference procedure is based on the
retrospective likelihood function  G G X Ypr( , , )u

n
u
m

u
c

u u=1

under the constraint (5), which is proportional to
 Y G G Xpr( , , , )u

n
u u

m
u
c

u=1 . We allow the distribution of X
to be nonparametric. Specifically, the empirical like-
lihood approach (Owen, 2004) is adopted by introducing
probability masses ≔π Xpr( )u u , u n= 1, …, , which sa-
tisfy the constraint

 π = 1.
u

n

y

=1

(6)

Denote π π π= ( , …, )n1 . In view of the conditional in-
dependence between Gu

c and Xu given Gu
m,

 


 


( ) ( ) ( )
( )

( ) ( )
( )

Y G G X Y G G X G G X

G X X
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G X π
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u u
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u u

u u
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u u
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u
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u
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u u

As discussed in Section 2.2,

≠ ≠

 ( ) ( )Y G G X Y G G G G X G

G

pr , , = pr , , , , if

1 or 1,

u u
m

u
c

u u u
m

u
c
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u u
m

u
c

and
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( ) ( )
(

)

Y G G X p Y G G G G X

p Y G G G G

X G G

pr , , pr = = 1, = 0, = 1,

+ (1 − )pr = = 1, = 1,

= 0, if = = 1,

u u
m

u
c

u fu u u
m

u
c

mu
c

fu
c

u

fu u u
m

u
c

mu
c

fu
c

u u
m

u
c

where pfu is an analogue of pf (see the definition in
Equation 3) for the uth mother–child pair. The prob-
ability G Gpr( )u

c
u
m can be written as a function of MAF θ

under the Mendelian inheritance law and random mat-
ing, as shown in Table S1. The relationship between Gu

m

and Xu can be quantified by the double additive regres-
sion model (H. Zhang et al., 2020):

 G k X
ξ θ F kη X

ξ θ F lη X
pr( = ) =

( , )exp{ )

( , )exp{ )}
,m k

τ

l l
τ

(7)

where ξ θ F G k( , ) = pr( = )k
m and η is a vector of

regression parameters. Here k = 0, 1, 2, Gpr( = 2)m

F θ Fθ= (1 − ) +2 , G F θ θpr( = 1) = 2(1 − ) (1 − )m , pr
G F θ F θ( = 0) = (1 − )(1 − ) + (1 − )m 2 . Note that F is a
measure characterizing departure from HWE, and F = 0 if
and only if HWE holds.

Denote β η θ FΘ = ( , , , )τ τ . The observed data like-
lihood can be expressed as


  



( )

( ) ( )

( )

πL Y G G X

Y G G X G G

G X π

(Θ, ) = pr , , ,

= pr , , pr

pr ,

u

n

u u
m

u
c

u

u

n

u u
m

u
c

u u
c

u
m

u
m

u u

=1

=1

(8)

where Θ and π satisfy the constraints (5) and (6).
Similar to H. Zhang et al. (2020), the profile likelihood
function

≔ πℓ (Θ) max ℓ(Θ, )
π

p

can be obtained using the Lagrange multiplier method,
which is equal to (refer to Supporting Information
Appendix B for a proof)


 




 

( )

( ) ( )

λ Y G G X

G G G X

n λ H f

ℓ(Θ, ) = log pr , ,

+ log pr + log pr

− log[ {1 + ( (Θ) − )}],

u

n

u u
m

u
c

u

u

n

u
c

u
m

u

n

u
m

u

u

n

u

=1

=1 =1

=1

(9)

where λΘ is the solution to the following equation with
respect to λ:

 H f

λ H f

(Θ) −

1 + ( (Θ) − )
= 0.

u

n
u

u=1

(10)

Here, H (Θ)u is defined as

 

 

 




( )

( ) ( )

H Y G j G k G l X

G k G j G l G k X

(Θ) = pr = 1 = , = , = ,

× pr = = pr = pr( = ) ,

u

j k l

m
m
c

f
c

u

m
c m

f
c m

u

(11)

and  Y G j G k G l X Y G jpr( = 1 = , = , = , ) = pr( = 1 = ,m
m
c

f
c

u
m

G k l G k G l X= + , = , = , )c
m
c

f
c

u .

The maximum profile likelihood estimator of Θ can
be obtained by jointly solving the score equations
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∂

∂

∂

∂

λ

λ

λℓ(Θ, )
= 0 and

ℓ(Θ, )

Θ
= 0, (12)

Note that λℓ(Θ, ) is not a true log likelihood function
since λ is a Lagrange multiplier instead of a parameter
in our model. As shown in H. Zhang et al. (2018),
the solution is a saddle point of λℓ(Θ, ). Therefore, it
is computationally unstable to solve the score
equations (12). The profile likelihood function (9) can
be slightly modified to resolve this numerical pro-
blem. Specifically, λΘ is replaced by its limiting value
λ0 as in H. Zhang et al. (2018, 2020). The validity of
this modification is based on the following lemma
(refer to Supporting Information Appendix C for a
proof):

Lemma 1. Let Θ0 denote the true value of Θ and the
“true” value λ0 is defined as the solution to the equations

∂

∂

∂

∂















E

λ
E

λ

λ

ℓ(Θ, )

Θ
= 0,

ℓ(Θ, )
= 0.

λ λ λ λΘ=Θ , = Θ=Θ , =0 0 0 0

(13)

If the parent‐of‐origin information is available for all
mother–child pairs, then the “true” value λ0 has a closed
form given by

λ
n

nf

n

n f
= −

(1 − )
.0

1 0

Based on Lemma 1, the modified profile likelihood

≔ λℓ (Θ) ℓ(Θ, )mp 0

can be maximized to yield an estimator Θ̂, which can be
obtained by solving the equation

∂

∂

ℓ (Θ)

Θ
= 0.

mp
(14)

Define

∂

∂ ∂

∂

∂



















A
n
E

n

(Θ ) =
1 ℓ (Θ)

Θ Θ
and Σ(Θ )

=
1
cov

ℓ (Θ)

Θ
.

τ0

2
mp

Θ=Θ

0

mp

Θ=Θ

0

0

(15)

Some asymptotic properties of Θ̂ are provided in the
following theorem (refer to Supporting Information
Appendix D for a proof).

Theorem 1. Under some regularity conditions, the
following large sample properties hold:

(i) With probability tending to 1, there exists a solution to
the score Equations (12), denoted as λ(Θ̃, ˜), which is
consistent for λ(Θ , )0 0 .

(ii) With probability tending to 1, there exists a solution Θ̂
to Equation (14), which is consistent for Θ0.

(iii) Both Θ̃ and Θ̂ are asymptotically normally dis-
tributed, with the same asymptotic expectation
Θ0 and the same variance‐ovariance matrix:

→

←

n N A A

n

(Θ̂ − Θ) {0, (Θ )Σ(Θ ) (Θ )}

(Θ̃ − Θ)

D

D

−1
0 0

−1
0 .

Consequently, the modified MLE Θ̂ is as efficient as

the original MLE Θ̃ that maximizes the profile like-
lihood function (9).

Significance tests and confidence intervals of the
unknown parameters Θ (including the POE parameter
β3) can be constructed based on Theorem 1. Specifically,
A (Θ )0 can be consistently estimated by

≔
∂

∂ ∂
A

n
ˆ (Θ̂ )

1 ℓ (Θ)

Θ Θ
,

τ

2
mp

Θ=Θ̂

and Σ(Θ )0 can be consistently estimated by the summa-
tion of two corresponding sample variance‐covariance
matrices multiplied by the respective numbers of cases
and controls divided by the total sample size n, which is
denoted by Σ̂(Θ̂ ). Consequently, the limiting variance‐
covariance matrix of n Θ̂ can be consistently estimated
by A Aˆ (Θ̂ )Σ̂(Θ̂ ) ˆ (Θ̂ )

−1 −1 . Significance tests and con-
fidence intervals ofΘ can be constructed according to the
asymptotic normality of Θ̂ and its estimated variance‐
covariance matrix.

2.4 | Implementation of the proposed
method

The new method developed in this paper has been im-
plemented in an updated version of R package CCMO,
which is available from GitHub (http://github.com/
zhanghfd/CCMO). The main function Multi-
LociPOE provides estimates of unknown parameters
(MAF θ and log‐odds ratios β and η) and corresponding
significance test results. The inputs of MultiLociPOE
include the disease statuses and diplotypes for
mother–child pairs, covariates, an indicator for the test

6 | ZHANG ET AL.

http://github.com/zhanghfd/CCMO
http://github.com/zhanghfd/CCMO


locus, a disease prevalence, a matrix consisting of possi-
ble haplotypes in the cohort, and a vector consisting of
the corresponding haplotype frequencies. An additional
function MultiLociPOE.input, a wrap‐up of the
function haplo.em in the R package haplo.-
stats, is provided to obtain all possible haplotypes and
their frequencies as inputs of MultiLociPOE.

3 | SIMULATION STUDIES

3.1 | Considered methods and data
generation

Extensive simulation studies were conducted to evaluate
the performance of the modified profile likelihood
method developed in this paper, which is referred to as
“M‐HAP” hereafter. An ideal version of “M‐HAP” was
also considered, which uses the true parent‐of‐origin
information and is referred to as “TRUE.” Note that
TRUE cannot be used in real data analyses. The method
developed by Lin et al. (2013), referred to as “P‐HAP”,
was also included, which also explores multilocus geno-
type data but cannot incorporate covariates. In M‐HAP
and P‐HAP, those haplotypes with estimated frequencies
smaller than the threshold 0.0004 were discarded, as did
in Lin et al. (2013). Our simulation results demonstrated
that it had little impact on POE inference results by es-
timating haplotype frequencies and discarding rare hap-
lotypes, refer to Figure S5 and Table S7 for details. Two
additional methods were considered in our simulation
studies. One was designed for evaluating maternal,
parent‐of‐origin, and interaction effects based on multi-
nomial modeling (Howey & Cordell, 2012). This method
was implemented in the standalone software “EMIM”
(version 3.22). Note that EMIM cannot incorporate cov-
ariates and it currently cannot use multilocus genotypes
to infer the parent‐of‐origin information for control
mother–child pairs. Consequently, we used the basic
version of EMIM that only uses single‐SNP genotypes.
The other one is the standard prospective logistic re-
gression method, referred to as “LOG.” LOG uses the
parent‐of‐origin information inferred from multilocus
genotypes and discards those mother–child pairs without
parent‐of‐origin information.

Haplotypes were generated based on published hap-
lotype frequencies on five SNPs in the genomic region
GPX1 (Chen et al., 2004), refer to supplementary tab. S‐1
in Lin et al. (2013) for haplotype structure and pairwise
r2 among the five SNPs and supplementary tab. S.2 for
pairwise D′ among the five SNPs. This genomic region
contains seven possible haplotypes, and the five SNPs
were shown to be in relatively strong LD. Maternal and

paternal diplotypes were independently generated by
assuming HWE, and children haplotypes were generated
under the assumption of no recombination among these
SNPs. Specifically, in each replication of simulations,
maternal and paternal diplotypes were generated for
30, 000 nuclear families under HWE and random mating,
and children diplotypes and parent‐of‐origin information
were generated following the Mendelian inheritance law.
Multilocus genotypes of mothers and children (i.e., Gm

andGc) were extracted from their diplotypes, which were
used as inputs of all considered methods. Furthermore,
the true parent‐of‐origin information was used in TRUE.
The five SNPs in the genomic region GPX1 were desig-
nated in turn as causal SNPs, and the genotypes gm and
gc at the causal SNP were then extracted. A covariate X
was generated according to the linear model

X ζ g E g e= ( − ( )) + ,m m (16)

or model

X ζ g E g e= (( ) − ( ) ) + ,m m2 2 (17)

where the error term e is a standard normal random
variable independent of gm and ζ is a parameter char-
acterizing the association strength between gm and X .
Here X was normalized to have mean zero so as to re-
duce potential estimation bias due to multicollinearity.
The disease statuses of children were generated accord-
ing the penetrance model (1), the disease prevalence was
fixed at 0.05, and the slope β0 was accordingly de-
termined once β β, …,1 4, and ζ were given.

3.2 | POE test performance

First, the value of ζ in model (16) was fixed at zero, so
that X was not a confounder in disease‐gene association
analysis. In such situation, both EMIM and P‐HAP
should be valid in detecting POEs. The log‐OR para-
meters β1, β2, β4 were fixed at log(1.2), and The POE
parameter β3 was set to be 0 or log(1.5). For each para-
meter combination, n = 2001 case mother–child pairs
(children were diseased) and n = 2000 control
mother–child pairs (children were non‐diseased) were
sampled from the 30, 000 mother–child pairs. Based on
1000 replications of simulations, the type‐I error rates
(β = 03 ) and powers (β = log(1.5)3 ) were estimated for
all considered methods at nominal level 5%, as shown in
Figure 1.

Evidently, all of the five methods had type‐I error
rates well controlled around the nominal level 5% in all
considered simulations. M‐HAP was much more
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powerful than LOG, with power gains ranging from
20.9% to 22.6%, demonstrating the advantage of exploit-
ing information including HWE, Mendelian law, and
conditional independence between gc and X given gm. As
expected, TRUE was uniformly more powerful than the
other four methods. Compared with TRUE, the power
losses of M‐HAP varied from SNP to SNP, depending on
the proportion of mother–child pairs whose parent‐of‐
origin could not be inferred (“missing proportion” here-
after) (Figure 2a). For example, the missing proportions
at SNP2 and SNP3 were 4.2% and 13.1%, corresponding
to power losses of 8.4% and 19.8%, respectively. M‐HAP
uniformly outperformed EMIM at all five test loci, de-
monstrating the advantage of exploiting multilocus gen-
otype information. The relative performance of M‐HAP
against EMIM largely depended on the proportion of
heterozygous mother–child pairs at each test locus

(Figure 2b). For example, the heterozygous mother–child
pairs proportion was relatively smaller for SNP4 (12.8%)
compared with SNP5 (24.8%), and the power gain of
M‐HAP against EMIM was smaller for SNP4 (9.7%)
compared with SNP5 (12.6%). Note that M‐HAP slightly
outperformed P‐HAP at all five SNPs, with power gains
ranging from 1.2% to 4.8%.

Then, power trend of the considered methods against
the sample size was evaluated with the causal SNP being
fixed at SNP3 (MAF= 0.283). Again, the log‐OR para-
meters β1, β2, β4 were fixed at log(1.2), and ζ was fixed at
0. The sample size varied from 200 to 1000 and β = 03 or
log(1.2). Results are summarized in Figure 3. Under the
null hypothesis (β = 03 ), all methods had type‐I error
rates well controlled around the nominal level 5% (ran-
ging from 4.4% to 5.6%). Under the alternative hypothesis
(β = log(1.2)3 ), the power of each considered method

(a) (b)

FIGURE 1 Type‐I error rates (a, β = 03 ) and powers (b, β = log(1.5)3 ) for testing parent‐of‐origin effects (POEs) on five
single‐nucleotide polymorphisms (SNPs) in gene GPX1. The five SNPs were treated as causal loci in turn. EMIM, a method developed in
Howey and Cordell (2012); LOG, the standard prospective logistic regression method; M‐HAP, our proposed method; P‐HAP, a method
developed in Lin et al. (2013); TRUE, the ideal version of M‐HAP exploiting the true parent‐of‐origin information

(a) (b)

FIGURE 2 Power losses of M‐HAP against TRUE (a) and power gains of M‐HAP against EMIM (b) for testing parent‐of‐origin effects
(POEs) at five single‐nucleotide polymorphisms (SNPs) in gene GPX1. EMIM, a method developed in Howey and Cordell (2012); M‐HAP,
our proposed method; TRUE, the ideal version of M‐HAP exploiting the true parent‐of‐origin information
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was increasing with the sample size. The power of LOG
was the lowest among the considered methods as LOG
could not deal with those mother–child pairs without
parent‐of‐origin information. Evidently, M‐HAP and
P‐HAP exploiting multilocus genotypes uniformly out-
performed the single SNP‐based method EMIM, de-
monstrating that exploiting multilocus genotypes
significantly enhanced the ability to determining the
parent‐of‐origin information and consequently improv-
ing the power for testing POEs. M‐HAP was also shown
to be slightly more powerful than P‐HAP and less pow-
erful than TRUE.

Next, various numbers of adjacent loci were used to
demonstrate the effect of haplotype length. With an in-
creased number of SNPs, the parent‐of‐origin information

could be identified more unambiguously, which should
result in a more powerful M‐HAP in testing POEs. Data
were again generated with the causal locus being SNP3 in
the genomic region GPX1. Again, the log‐OR parameters
β1, β2, β4 were fixed log(1.2), ζ was fixed at 0, and the
sample size was fixed at 200. The POE parameter was
β = 03 , log(1.2), log(1.5), or log(2.0). Results are sum-
marized in Figure 4. Shown in the x‐axis is the number of
adjacent loci plus one (i.e., the total number of involved
SNPs). Evidently, the POE test power steadily increased
with K , and the power gain became minor when K was
larger than 3 (Figure 4).

After that, we considered jointly testing maternal effects
and POEs. The log‐OR parameters β2, β4 were fixed log(1.2),
ζ was fixed at 0, and the sample size was fixed at 200.

(a) (b)

FIGURE 3 Type‐I error rates (a: β = 03 ) and powers (b: β = log(1.2)3 for testing parent‐of‐origin effects (POEs) with different sample
sizes. Sample size, common sample size shared by cases and controls. EMIM, a method developed by Howey and Cordell (2012); LOG, the
standard prospective logistic regression method; M‐HAP, our proposed method; P‐HAP, a method developed by Lin et al. (2013); TRUE, an
ideal version of M‐HAP using true parent‐of‐origin information

FIGURE 4 Parent‐of‐origin effect (POE)
test power of M‐HAP against the length of
haplotype (the total number of involved single‐
nucleotide polymorphisms [SNPs]) for various
POE parameter values (β = 0, log(1.2),3

log(1.5), log(2.0)). In the x‐axis, “1” means that
only the test locus SNP3 was used; “2” means
that one adjacent locus (i.e., SNP4) was used;
“3” means that two adjacent loci were used (i.e.,
SNP2 and SNP4); “4” means that three adjacent
loci were used (i.e., SNP1, SNP2, and SNP4); “5”
means that four adjacent loci were used (i.e,
SNP1, SNP2, SNP4, and SNP5)
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The maternal effect parameter β1 and POE parameter β3
were set to be 0 or log(1.2). Results are summarized in
Figure 5. As shown in Figure 5a, all five methods had type‐I
error rates well controlled around the nominal level 5% at all
five loci. As shown in Figure 5b, M‐HAP was much more
powerful than LOG with power gains ranging from 18.1% to
26.8%, and it was only slightly less powerful than TRUE and
slightly more powerful than P‐HAP and EMIM.

Finally, non‐zero ζ values were used to evaluate the
performance of the considered methods in the presence
of a confounding covariate. SNP1 was selected as the
causal locus and the log‐OR parameters were fixed at
β β= = log(1.8)1 4 , β = log(1.5)2 , and β = 03 when

testing the POEs, while the log‐OR parameters were fixed
at β β= = 01 3 and β β= = log(1.2)2 4 when jointly test-
ing maternal effects and POEs. Again, the sample size
was fixed at 200. The POE test results are displayed in
panel A of Figure 6. With ζ in model (17) varying from
−1 to 1, M‐HAP, LOG, and TRUE had type‐I error rates
well controlled around the nominal level 5%, and EMIM
had decreasing type‐I error rates (from 8.1% to 2.6%),
while P‐HAP also had decreasing type‐I error rates (from
6.5% to 3.2%) (Figure 6a). The results of jointly testing
maternal effects and POEs are displayed in Figure 6b.
With ζ in model (17) varying from −log(1.5) to log(1.5),
M‐HAP, LOG, and TRUE had type‐I error rates well

(a) (b)

FIGURE 5 Type‐I error rates (a, β β= = 01 3 ) and powers (b, β β= = log(1.2)1 3 ) for jointly testing maternal effects and parent‐of‐origin
effects (POEs) on five single‐nucleotide polymorphisms [SNPs] in gene GPX1. The five SNPs were treated as causal loci in turn. EMIM, a
method developed in Howey and Cordell (2012); LOG, the standard prospective logistic regression method; M‐HAP, our proposed method;
P‐HAP, a method developed by Lin et al. (2013); TRUE, the ideal version of M‐HAP exploiting the true parent‐of‐origin information

(a) (b)

FIGURE 6 Type‐I error rates for testing parent‐of‐origin effects (POEs) (a, β = 03 ) or jointly testing maternal effects and POEs
(b, β β= = 01 3 ) with a confounding covariate. In (a), the log‐OR parameters β1, β2, and β4 were fixed at log(1.8), log(1.5), and log(1.8),
respectively while the confounding effect ζ ranged from −1 to 1. In (b), the log‐OR parameters β2, and β4 were fixed at log(1.2) while the
confounding effect ζ ranged from −log(1.5) to log(1.5). The test locus was fixed to be SNP1 and X ζ g E g e= (( ) − ( ) ) +m m2 2 . EMIM, a
method developed by Howey and Cordell (2012); LOG, the standard prospective logistic regression method; M‐HAP, our proposed method;
P‐HAP, a method developed by Lin et al. (2013); TRUE, the ideal version of M‐HAP exploiting the true parent‐of‐origin information
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controlled around the nominal level 5% while P‐HAP and
EMIM could not maintain the type‐I error rates when the
absolute value of ζ deviated from zero. In summary, the
type‐I error rates of EMIM and P‐HAP were distorted in
the presence of a confounding covariate while our
method M‐HAP was robust to the presence of a con-
founding covariate.

3.3 | Estimation performance

Simulation studies were conducted to examine the es-
timation performance of M‐HAP, LOG, and P‐HAP in
terms of estimation bias and variance. Data were gen-
erated in a similar way as in the above subsection.
Again, SNP1 was selected as the causal locus and
β β β, ,1 2 3, and β4 were fixed at log(1.2), log(1.2), log(1.5),
and log(1.2), respectively. The sample size was fixed at
200. Two simulation scenarios were considered to

mimic independence and moderate correlation between
maternal genotype and covariate, respectively, that is,
ζ = 0 and ζ = log(1.5) in model (16). Simulation results
are summarized in Table 1 based on 1000 replications of
simulations.

M‐HAP and LOG appeared to be unbiased in both
scenarios. On the other hand, P‐HAP was unbiased in the
independence scenario but was evidently biased in the
dependence scenario. This indicated that M‐HAP was
more robust to the misspecification of distribution

G Xpr( , )m compared with P‐HAP. All of the three
methods had mean estimated standard errors (SEEs)
close to the empirical standard errors (SEs). The em-
pirical coverage probabilities of the 95% confidence in-
terval (CPs) for the three methods were close to the
nominal level 95% except that P‐HAP was liberal in de-
pendence scenario 1. The SEs of M‐HAP were around
14%, 29%, 25%, and 6% lower than LOG for β1, β2, β3, and
β4, respectively. On the other hand, the SEs of M‐HAP

TABLE 1 Simulation results of M‐HAP for various covariate configurations

M‐HAP LOG P‐HAP

Scenarioa log‐ORb True Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP

Ind β1 0.182 −0.036 0.228 0.231 0.955 0.025 0.261 0.271 0.958 0.053 0.213 0.217 0.956

β2 0.182 −0.015 0.170 0.170 0.952 0.014 0.230 0.232 0.957 −0.016 0.172 0.170 0.944

β3 0.405 0.028 0.193 0.198 0.948 0.018 0.252 0.255 0.949 −0.039 0.182 0.183 0.953

β4 0.182 0.004 0.104 0.106 0.955 0.005 0.112 0.111 0.955

Dep1 β1 0.182 −0.068 0.231 0.235 0.945 0.046 0.267 0.272 0.950 0.148 0.221 0.218 0.882

β2 0.182 0.008 0.164 0.168 0.956 0.017 0.229 0.232 0.952 0.012 0.175 0.171 0.940

β3 0.405 0.012 0.193 0.197 0.952 0.011 0.254 0.256 0.946 −0.036 0.186 0.182 0.944

β4 0.182 0.011 0.103 0.104 0.951 0.003 0.110 0.107 0.942

Dep2 β1 0.182 −0.006 0.226 0.228 0.955 0.002 0.280 0.271 0.944 0.052 0.231 0.217 0.929

β2 0.182 0.042 0.172 0.169 0.944 0.013 0.244 0.232 0.936 0.048 0.180 0.168 0.939

β3 0.405 −0.026 0.186 0.189 0.950 0.013 0.259 0.255 0.945 −0.075 0.178 0.182 0.935

β4 0.182 −0.011 0.101 0.101 0.942 0.002 0.106 0.106 0.950

Dep3 β1 0.182 −0.030 0.223 0.226 0.956 0.011 0.281 0.273 0.949 0.132 0.225 0.215 0.900

β2 0.182 0.052 0.175 0.171 0.940 0.023 0.242 0.232 0.953 0.053 0.182 0.167 0.939

β3 0.405 −0.040 0.188 0.193 0.951 0.027 0.264 0.254 0.949 −0.075 0.176 0.181 0.937

β4 0.182 −0.009 0.098 0.100 0.954 −0.001 0.104 0.106 0.954

Abbreviations: Bias, estimation bias for log‐OR; CP, empirical coverage probability of 95% confidence intervals; LOG, the standard prospective logistic
regression method; M‐HAP, our proposed method; P‐HAP, a method developed in Lin et al. (2013); SE, empirical standard error; SEE, mean estimated
standard error; True, the true value of log‐OR.
aInd, covariate being independent of maternal genotype (X e= ); Dep1, covariate being dependent of maternal genotype (X g E g e= log(1.5)( − ( )) +m m );
Dep2, covariate being dependent of paternal genotype (X g E g e= log(1.5)( − ( )) +f f ); Dep3, covariate being dependent of maternal genotype and paternal
genotype (X g E g g E g e= log(1.5)( − ( )) + log(1.5)( − ( )) +m m f f ). Here, the error term e followed the standard normal distribution and was independent
of gm.
bβ1, log‐OR for maternal genetic effect; β2, log‐OR for children genetic effect; β3, log‐OR for POE; β4, log‐OR for the covariate effect.
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were 6% and 4% higher than P‐HAP for β1 and β3, re-
spectively, while the SE of M‐HAP for β2 was close to that
of P‐HAP. In summary, M‐HAP was more efficient than
LOG and was more unbiased than P‐HAP.

We also considered two more simulation scenarios,
where the covariate was associated with paternal geno-
type g f . Simulation results are again summarized in
Table 1 based on 1000 replications of simulations. In
dependence scenario 2 (Dep2), the covariate was asso-
ciated with paternal genotype g f ; in dependence scenario
3 (Dep3), the covariate was associated with both ma-
ternal genotype gm and paternal genotype g f . Evidently,
in both scenarios, M‐HAP and LOG were more unbiased
than P‐HAP, and the former two methods maintained
coverage probabilities around the nominal level but
P‐HAP could be considerably liberal. These simulation
results indicate that M‐HAP was robust to the violation
of conditional independence of X and Gc given Gm to
some extent.

In the above simulations, only one covariate was in-
volved. We also considered simulation scenarios with
two covariates, and the corresponding simulation results
are summarized in Tables S4 and S5. The results were
similar. That is, P‐HAP was evidently biased when the
covariate was moderately associated with maternal gen-
otype and paternal genotype while M‐HAP and LOG
were still quite unbiased.

3.4 | Sensitivity analyses w.r.t. HWE,
prevalence, and LD

First, a sensitivity analysis was conducted for the ro-
bustness of the proposed method M‐HAP by violating the
assumption of HWE. In case HWE does not hold, a
fixation index E (different from F in model (7)) can be
used to characterize the departure from HWE (Satten &
Epstein, 2010):

≠





h h
E h E h h h

E h h h h
pr( , ) =

pr( ) + (1 − )pr ( ), for = ,

(1 − )pr( )pr( ), for ,
1 2

1
2

1 1 2

1 2 1 2

(18)

where h h( , )1 2 is an ordered diplotype and h hpr( , )1 2 is the
corresponding frequency. Since ≥h hpr( , ) 01 2 for any
haplotype pair h h( , )1 2 , E should satisfy the constraint

≤ ≤h E−min [1 − pr( )] 1h
−1 . SNP1 was chosen as the

causal locus and the genotype data from the remaining
four SNPs were used to infer parental origins. The log‐OR
parameters were fixed at β β β= = = log(1.2)1 2 4 , β = 03

or log(1.5). Furthermore, ζ in model (16) was fixed at
log(1.5) to mimic a moderate correlation betweenGm and
X . Various fixation indexes, from the minimal possible
value to 0.8, were considered. Presented in Table 2 are
estimation and test results of M‐HAP based on 5,000
replications of simulations. As expected, the estimation
bias of M‐HAP (fixation index F incorporated in (7))
appeared to be negligible and the type‐I error rates were
well controlled around the nominal level 5%. This in-
dicated that M‐HAP was robust to the violation of HWE
through the incorporation of F in (7) to a large extent.

Additional simulations were conducted to examine
possible efficiency loss of incorporating the fixation index
F in model (7) when HWE held. The test results are
summarized in Figure S1. Evidently, the two versions of
M‐HAP (fixing F = 0 vs. estimating F in (7)) performed
very comparably in terms of both type‐I error rates and
powers, indicating that incorporating fixation index re-
sulted in little power loss while well controlling type‐I
error rates. On the other hand, additional simulations
indicated that fixing F = 0 in M‐HAP could result in
inflated type‐I error rates when HWE was seriously vio-
lated (results not shown).

Then, another sensitivity analysis was conducted to
study whether M‐HAP is robust to the misspecification of
disease prevalence f . All parameters in the above sensi-
tivity analysis were adopted. The true f was 0.05 but it
was specified to be 0.01, 0.1, or 0.5 in M‐HAP. Simulation
results are summarized in Table S6. The estimates of the
POE parameter β3 appeared to be unbiased and the
corresponding type‐I error rates were quite close to the
nominal level, no matter how serious f was misspecified.
This could be due to the conjecture that misspecifying f

has impact only on the intercept in the logistic regression
model (H. Zhang et al., 2020).

TABLE 2 Simulation results of M‐HAP for a sensitivity analysis with HWE violated

E Bias SE SEE T1E E Bias SE SEE T1E

−0.03 −0.019 0.201 0.207 0.051 0.40 −0.037 0.227 0.231 0.054

0.00 −0.016 0.200 0.203 0.048 0.60 −0.041 0.252 0.253 0.052

0.20 −0.026 0.208 0.210 0.052 0.80 −0.055 0.318 0.315 0.058

Abbreviations: Bias, mean of the β3 estimates minus the true β3 value; E, fixation index used to characterize the departure from HWE (Satten & Epstein, 2010);
HWE, Hardy–Weinberg equilibrium; SE, estimated standard error of the β3 estimates; SEE, mean estimated standard error of the β3 estimates; T1E, type‐I error
rate for testing parent‐of‐origin effect β3.
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Finally, a sensitivity analysis was conduct to study
whether M‐HAP is robust to the assumption of no re-
combination among adjacent loci (i.e., the adjacent loci
were in very strong LD). Specifically, the map distance
between any two adjacent loci was set to be 0.1 cM,
which was larger than the one for the real data described
in the next section. The corresponding recombination
rate between any two adjacent loci was 0.001 according
to the Haldane map function. With specified re-
combination rates, multiple SNP diplotypes were gener-
ated according to the Markov chain property. The other
settings were similar to those for Table 1. As shown in
Table S3 and Figure S4, the estimation biases were neg-
ligible, the coverage probabilities of confidence intervals
were close to the nominal level, and the type‐I error rates
were well controlled around the nominal level.

4 | REAL DATA APPLICATIONS

4.1 | The Jerusalem Perinatal
Study (JPS)

We applied the considered four methods (i.e., M‐AHP, P‐
HAP, EMIM, and LOG) to case–control mother–child
paired data from the JPS (Harlap et al., 2007). This study
included prenatal and perinatal archival survey and
medical record data for 17,003 families of Jerusalem be-
tween the years 1974 to 1976. Between the years 2007 and
2009, around 1500 SNPs in multiple candidate gene re-
gions were genotyped for 1250 mother–child pairs in the
JPS, which were selected based on children's birth weight
and mothers' prepregnancy body mass index (pp‐BMI)
(Hochner et al., 2012). According to Wu et al. (2016), a
protein encoded by gene PPARGC1A could regulate
genes involved in energy metabolism, which might be
associated with children birth weight. Our aim was to
detect POEs of several candidate SNPs in gene PPARG-
C1A on intrauterine growth reflected by children birth
weight. We selected nine SNPs in gene PPARGC1A based
on LD strength (D′ > 0.6). Figures S7 and S8 show the
LD structures of these nine SNPs. The pairwise D′ and r2

of the nine SNPs appeared to be relatively large, in-
dicating strong LDs within these nine SNPs. The max-
imal map distance among these nine SNPs was around
0.025 cM, which was smaller than the one for our sen-
sitivity analysis presented in the last paragraph of
Section 3.4. Therefore, the no‐recombination assumption
required for M‐HAP and P‐HAP is approximately sa-
tisfied. We focused on a sub‐cohort with mothers' pp‐
BMI<25 and used 2.5 kg as the cutoff point for low birth
weight. The resulting sub‐cohort size was 658 pairs,
consisting of 96 pairs with low birth weight (<2.5 kg) and

562 control pairs with normal or high birth weight
(>2.5 kg). There were 297 children with low birth weight
among the 8238 eligible children with maternal pp‐BMI
<25, so the prevalence of low birth weight was specified
to be ∕ ≈297 8, 238 0.036. As shown in Mallia et al.
(2017), pp‐BMI is an established risk factor for low birth
weight. Therefore, pp‐BMI was included as a covariate in
M‐HAP and LOG. Estimated haplotype frequencies are
reported in Table S8. Table S9 shows estimated MAFs,
p‐values for testing HWE, and p values for testing in-
dependence between maternal genotypes and pp‐BMI.
All of the MAFs of the nine SNPs were >0.05, so that all
considered methods should be applicable as these
methods are valid for common SNPs in general. For
several SNPs, pp‐BMI was significantly associated with
maternal genotypes, so that P‐HAP and EMIM could be
biased in POE inference. All p values for testing POEs are
displayed in Figure S6, and estimation results for three
potentially significant SNPs (p value<5%) are reported in
Table 3.

We have the following observations. First, pp‐BMI
was not significantly associated with maternal genotype
of the three SNPs (p values for testing H η: = 00 were
greater than 0.05), suggesting that all of the four con-
sidered methods could be applicable. Second, the esti-
mated log‐ORs by M‐HAP, LOG, and P‐HAP were
consistent in the sense that they shared the same signs
across the three SNPs. Third, the estimated standard er-
rors were uniformly smaller for M‐HAP compared with
LOG and P‐HAP, suggesting that M‐HAP might be more
efficient in estimating POEs. Finally, only M‐HAP pro-
duced suggestively significant POEs (p value < 5%) for
the three SNPs, though they were not significant after
Bonferroni correction (Figure S6). Our analysis results
were consistent with those of Lin et al. (2013). Further
investigation is warranted to confirm these POEs.

4.2 | The Danish National Birth
Cohort (DNBC)

We applied the considered four methods (i.e., M‐AHP, P‐
HAP, EMIM, and LOG) to case–control mother–child
paired data from the DNBC (Olsen et al., 2001). DNBC is
a well‐established, prospective cohort. To reduce poten-
tial bias in data collection and sampling, this study en-
rolled women early in pregnancy, before any adverse
pregnancy outcomes (Olsen et al., 2001). Data posted on
dbGaP (http://dbgap.ncbi.nlm.nih.gov) contain geno-
types and clinical records of 720 case mother–child pairs
with spontaneous onset of labor or preterm premature
rupture of membranes and 906 control mother–child
pairs with the children being born at ~40 weeks'
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gestation, which were drawn from a genome‐wide
case–control study (Ryckman et al., 2012). According to
G. Zhang et al. (2017), some variants in gene TEKT3 were
shown to be significantly associated with preterm birth.
Among these significant SNPs, rs2024157 was also gen-
otyped in the DNBC study. The aim of the current ana-
lysis was to assess whether variants tightly linked to
rs2024157 had any significant POE on preterm birth. In
additional to rs2024157, we selected seven SNPs tightly
linked to rs2024157 (D′ > 0.6). Figures S9 and S10 show
the LD structures of these eight SNPs. The pairwise D′
and r2 of the eight SNPs appear to be relatively large,
indicating strong LD within these eight SNPs. The max-
imal map distance among these eight SNPs was around
0.05 cM, which was smaller than the one for the sensi-
tivity analysis presented in the last paragraph of
Section 3.4. Therefore, the no‐recombination assumption
required for M‐HAP and P‐HAP is approximately sa-
tisfied. We focused on a subset with complete genotype
data on these eight SNPs, which consisted of 1464
mother–child pairs with 635 case pairs and 829 control
pairs. Since the preterm birth rate in Denmark was
around 5% (Blencowe et al., 2012), the prevalence of
preterm birth was specified to be 5% in M‐HAP. Again,
pp‐BMI was included as a covariate in M‐HAP and LOG.

Estimated haplotype frequencies are reported in
Table S10. Table S11 shows estimated MAFs, p values for
testing HWE, and p‐values for testing independence be-
tween maternal genotypes and pp‐BMI. The MAFs of all
of the eight SNPs were shown to be >5%, so that all
considered methods should be applicable as these
methods are valid for common SNPs in general. For
several SNPs, pp‐BMI was significantly associated with
maternal genotypes, so that P‐HAP and EMIM could be
biased in POE inference.

All p‐values for testing POEs are displayed in
Figure S11, and estimation results for four potentially sig-
nificant SNPs (p value < 5%) are reported in Table 4.
M‐HAP exclusively identified three SNPs (rs7502492,
rs1870428, and rs1380179) with significant POE effects.
Among the three existing methods, only EMIM identified
one significant SNP (rs1870429) (p value < 5%). However,
none of them were significant after Bonferroni correction.
As shown in Table 4, the estimated log‐ORs by
M‐HAP, LOG, and P‐HAP were consistent in the sense that
they shared the same signs across the four SNPs and the
estimated standard errors were uniformly smaller for
M‐HAP compared with LOG and P‐HAP, suggesting that
M‐HAP might be more efficient in estimating POEs. Fur-
ther investigation is warranted to confirm these POEs.

TABLE 3 POE analysis results for three potentially significant SNPs in the Jerusalem Perinatal Study

SNPa Methodb Log‐ORc SEd 95% CIe p Valuef η̂ (p value)g

rs2932965 M‐HAP −0.579 0.244 [−1.058, −0.099] 0.018 0.014 (0.302)

LOG −0.215 0.291 [−0.787, 0.357] 0.462

P‐HAP −0.051 0.294 [−0.628, 0.526] 0.810

EMIM 0.828

rs8192678 M‐HAP 0.457 0.230 [0.005, 0.909] 0.047 0.005 (0.673)

LOG 0.358 0.261 [−0.153, 0.869] 0.170

P‐HAP 0.338 0.238 [−0.129, 0.805] 0.150

EMIM 0.168

rs2970853 M‐HAP −0.515 0.231 [−0.968, −0.061] 0.026 0.001 (0.892)

LOG −0.319 0.250 [−0.808, 0.171] 0.202

P‐HAP −0.138 0.251 [−0.629, 0.353] 0.425

EMIM 0.442

Abbreviations: POE, parent‐of‐origin effect; SNP, single‐nucleotide polymorphism.
aTest locus.
bM‐HAP, our proposed method; LOG, the standard prospective logistic regression method; P‐HAP, a method in Lin et al. (2013); EMIM, a method in Howey
and Cordell (2012).
cEstimated POE β̂3.
dEstimated standard error of β̂3.
e95% confidence interval of β3.
fp value for testing H β:0 3.
gEstimated η value (p value for testing H η: = 00 ).
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5 | DISCUSSION

Genetic effects related to parent‐of‐origin have been iden-
tified to be possible causal factors related to children early‐
life development and disorders. The ability to detecting
POEs relies on the availability of the parent‐of‐origin in-
formation of children alleles. When the genotypes of both
mother and child are heterozygous, the parental origins of
two children alleles are ambiguous. In this paper, an effi-
cient and robust multilocus statistical method, M‐HAP, is
developed for assessing POEs based on case–control
mother–child paired data by incorporating covariates. M‐
HAP uses multilocus genotypes to infer parent‐of‐origin
information. Available information, including Mendelian
inheritance law, HWE, random mating, and conditional
independence between children genotype and covariates
given maternal genotype, are fully explored in M‐HAP.

Many softwares have been developed to infer haplo-
types using SNP genotypes from unrelated individuals
and parent–child triads or mother/father–child pairs, to

name a few, HAPLORE (K. Zhang et al., 2005), Beagle
(Browning & Browning, 2007), and SHAPEIT2
(Delaneau et al., 2013). The inferred haplotypes can be
directly used to determine parental origins. As demon-
strated by the simulation results of Delaneau et al.
(2013), the average false assignment rates of parental
origins were very low when mother–child pairs data were
used. This motivated our haplotype‐based method M‐
HAP for detecting POEs exploiting multilocus genotype
data. Single‐SNP genotypes cannot determine the par-
ental origins when the genotypes of both mother and
child are heterozygous. Simply ignoring these
mother–child pairs with ambiguous parent origins may
lead to estimation bias and loss of statistical efficiency for
detecting POEs. A naïve strategy is to use the parental
origin inferred from the haplotype with maximal like-
lihood, but this could result in a potential estimation bias
and inflated type‐I error rate (Howey et al., 2015). In-
stead, we propose to replace the log‐likelihood function
adopted in M‐HAP by its conditional expectation with

TABLE 4 POE analysis results for four potentially significant SNPs in gene TEKT3 in the Danish National Birth Cohort study

SNPa Methodb Log‐ORc SEd 95% CIe p Valuef η̂ (p value)g

rs7502492 M‐HAP −0.273 0.135 [−0.539, −0.008] 0.044 0.013 (0.153)

LOG −0.100 0.160 [−0.404, 0.224] 0.574

P‐HAP −0.193 0.141 [−0.469, 0.083] 0.171

EMIM 0.237

rs1870428 M‐HAP −0.357 0.143 [−0.639, −0.076] 0.013 0.021 (0.035)

LOG −0.140 0.155 [−0.444, 0.163] 0.364

P‐HAP −0.226 0.152 [−0.523, 0.072] 0.137

EMIM 0.385

rs1380179 M‐HAP −0.337 0.144 [−0.622, −0.054] 0.020 0.022 (0.030)

LOG −0.070 0.157 [−0.377, 0.237] 0.655

P‐HAP −0.241 0.154 [−0.543, 0.061] 0.117

EMIM 0.383

rs1870429 M‐HAP −0.211 0.138 [−0.482, 0.060] 0.126 0.002 (0.838)

LOG −0.213 0.150 [−0.507, 0.080] 0.153

P‐HAP −0.103 0.147 [−0.391, 0.185] 0.484

EMIM 0.045

Abbreviations: POE, parent‐of‐origin effect; SNP, single‐nucleotide polymorphism.
aTest locus.
bM‐HAP, our proposed method; LOG, the standard prospective logistic regression method; P‐HAP, a method in Lin et al. (2013); EMIM, a method in Howey
and Cordell (2012).
cEstimated POE β̂3.
dEstimated standard error of β̂3.
e95% confidence interval of β3.
fp Value for testing H β:0 3.
gEstimated η value (p Value for testing H η: = 00 ).
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respect to missing parental origin given multilocus gen-
otypes. With this strategy, M‐HAP successfully main-
tained type‐I error rates around the nominal level in our
simulation studies. We also developed a rigorous
expectation‐maximization algorithm to explore multi-
locus genotypes in a separate paper (Tian et al., 2021).

Directly maximizing the profile likelihood function
(9) is often infeasible due to computation difficulty. To
resolve this problem, we propose to replace the La-
grange multiplier involved in the profile likelihood
function by its limiting value without sacrificing statis-
tical efficiency. This greatly enhances the computational
feasibility of M‐HAP. In the simulation studies de-
scribed in Section 3.3, it took a laptop with a 2.0 GHz
Intel i7 core CPU around 3 s on average for M‐HAP
analyzing a single simulated data set (200 case pairs and
200 control pairs), compared with 160 s by P‐HAP.
Moreover, the estimation and test results in our simu-
lation studies indicate that M‐HAP was statistically
more efficient than the other considered methods. In
the presence of a confounding covariate, EMIM and
P‐HAP could produce distorted type‐I error rates while
M‐HAP still had well‐controlled type‐I error rates. In
summary, M‐HAP is attractive owing to its computa-
tional feasibility, statistical efficiency, and robustness.

Departure from HWE could result in inflated type‐I
error rates in M‐HAP. This problem could be partly re-
solved by introducing a fixation index, as demonstrated
in Section 3.4. M‐HAP was shown to be quite robust to
the misspecification of phenotype prevalence, which
could be due to the conjecture that misspecifying the
phenotype prevalence has impact only on the intercept
estimation in model (H. Zhang et al., 2020).

The current version of M‐HAP was specifically de-
signed for analyzing case–control mother–child paired
data. Nevertheless, M‐HAP can be easily extended to
further incorporate genotype data from fathers, which
offer additional information for identifying parental ori-
gins. It is of interest to extend M‐HAP to handle nuclear
families with more than one child and missing geno-
types, which deserves further investigation.
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